

 HUSKY RECORDS MUSIC PLAYER DESIGN DOCUMENTATION

Version 1.1a
Final Release

Cameron Kennedy
Christopher Brown

Dennis Giese
Erik Uhlmann

Trey Del Bonis

© 2020 Husky Records
www.huskyrecords.net

Advised by: Prof. Guevara Noubir

(Northeastern University)

 German Engineering

 Made in USA

Husky Records confidential

Overview 2
System design idea 2
Security goals 2

Music Integrity Protection 2
Data and execution Access 🅱 revention 3

Protection of flags 3
Region Lock 3
Unauthorized Play 3
Pin Extraction 3
Music Tamper 4
Custom Music 4

Data Structures 5

Features 6

Implementation 6
Keys and Configuration 6
Special Modules and Security features 7

Kingcrab 7
Custom seeded crypto 7
Environmental monitoring 7
Glitching and Timing attacks prevention 8
Binary packing 8

Requirements 8
Provisioning Process 8

createRegions 8
createUsers 9
protectSong 9
createDevice 9
buildDevice 10
packageDevice 10
deployDevice 10
Provision Flowchart 11

Login Process 12
Login Detail 13

Music Playing Process 14
Song Load Detail 15

Pause, Resume, Rewind, Fast-forward 16
Song Sharing Process 16

Troubleshooting 17
How to build Microblaze and Bitstream independently 17

1

Husky Records confidential

Overview

System design idea
Our first line of defense is our Terms of Service and EULA, where we sue everyone who dares
to hack our platform or to copy the music. Our big idol here is the very famous Recording
Industry Association of America (RIAA). We spent most of our design time and budget in
discussing the EULA and deciding on the team name , until we actually figured, that the EULA 1

is not enforceable and not legally binding. The remaining time we tried quickly to implement a
technical defense against attacks.

We have created a cryptographic scheme for protection and verification of song data as well as
auxiliary data such as user information. Our scheme attempts to cover as much of the
requirements as possible using only basic cryptographic primitives such as Blake2b hashes,
XChaCha20 block encryption, and EdDSA signatures, ensuring that the only way to decrypt
songs is with the knowledge of the appropriate user and region secrets. Additionally, we use
Certified Web Scale Blockchain Technology™ to verify the integrity of song data as it is playing,
ensuring that it is impossible to play an unauthorized song.

In the event that unintended operation of the secure processor occurs, we invoke the DAB
mechanism (Data and execution Access 🅱 revention) in order to halt future operation of the
secure processor until the device is reset. We also perform a DAB invocation whenever we
detect other internal errors. Due to our aggressive application of the design recipe, these kinds
of errors should not occur under normal operation. We also make use of the Xilinx brownout
detection and other security features to trigger a DAB in the event of glitching attacks. We have
disabled hardware debug modules in order to disallow trivial memory inspection, disabled
hardware readback of the FPGA bitstream in the build configuration, and have made efforts to
prevent usage of ptrace and other revere engineering utilities in the miPod player.

Security goals

Music Integrity Protection
We protect our system against playing unauthorized songs by mandating that all songs are
signed by the factory at multiple levels. Forging these signatures requires knowledge of a
private key that never leaves the factory and is not present on customer devices. We also
ensure that the key material to decrypt region locked songs does not exist on devices for other

1 By reading this document you confirm to have read our EULA, not too seriously, which can be
found here: https://www.huskyrecords.net/eula.txt

2

https://htdp.org/2019-02-24/part_preface.html#(part._sec~3asystematic-design)
https://www.huskyrecords.net/eula.txt

Husky Records confidential

regions. Users that do not have access to songs additionally do not have the keys to decrypt
the metadata either.

User-specific keys are generated only on an as-needed basis using Argon2id, and do not exist
up until this point.

We also avoid needing to sign each individual song block by instead signing a Merkle root and
generating inclusion proofs for each block against this Merkle root. This requires that the
untrusted side have the entire song available as the song being loaded is required to generate
these proofs.

Data and execution Access 🅱 revention
The Data and execution Access 🅱 revention (DAB) mechanism is a bleeding edge new tool
activated when certain anomalous behaviors are identified. The secure processor will clear all
buffers, sensitive and nonsensitive, then reset itself. Performing a DAB is a defense procedure
that should not occur when using the Husky Records standard miPod music player. Use of
other players is not supported and Husky Records is not liable for any damages, real or
perceived, from using nonstandard players.

Protection of flags
In many places keys are encrypted and payload data is signed. The only place any of these
layers of encryption are unwrapped is on the secure MicroBlaze processor. The structure of
these keys can be found in the Data Structures section.

Region Lock
“play a song from a region that the player is not provisioned for”
When the device is provisioned for a region it’s assigned a region specific key used to decrypt
the region data block corresponding with that region. This block includes the song decryption
key used to decrypt the song stream. If a player doesn’t have the key for any of the regions of
the song then it simply doesn’t have enough information to decrypt the song at all.

Unauthorized Play
“play a song that the user does not have access to”
Similarly to the region locking, users must also have the decryption key for the songs they own
in order to be able to play them. So, if a user does not have access to a song, they are unable
to decrypt the grant information containing the song decryption key. Any attempt to bypass the
miPod userland application results in a reset and temporary lockdown of the DRM module.

3

Husky Records confidential

Pin Extraction
“obtain the pin for another user”
User pins are never stored on the device at rest, and user pins are only stored transiently during
hashing. The username and pin are used to create HMACs using the secret keys of the miPod
application and the DRM module. The resulting HMAC is hashed with a salt using Argon2ID in
order to verify the pin against the user information file. The Argon2ID execution is done on the
insecure ARM core, and then transferred to the secure processor for verification and then
transformation into the user key. After the user logs out or the device is reset the user keys are
destroyed.

Music Tamper
“modify a protected song”
In the song metadata block are the Merkle roots for the song data block sequence and the song
preview block sequence. In addition to the blocks themselves, the player must provide the
secure processor a Merkle proof of each block, proving that the block is committed to in the
Merkle root. The metadata block must be signed by the factory so this also requires that the
Merkle roots be blessed. Additionally, the song_key (which may be derived from the
user_song_key and the region_song_key) is trusted because both of its components are signed
by the factory and bound to the song via the song_id (which itself is signed and stored within the
song metadata).

Custom Music
“protect a custom song, optionally using a custom player program”
A user would need to know multiple encryption keys and to forge multiple signatures in order to
play unauthorized music. The miPod application is protected against reverse engineering. Every
attempt to bypass it, results in a temporary lockdown of the DRM.

4

Husky Records confidential

Data Structures
These are the core data structures, for a full description of all data structures including the
different wrapping layers, see mb/crypto_types.h.

5

Husky Records confidential

Features
miPod supports the following WAV files features

● Songs up to 128 megabytes.
● Songs with a sample rate of 48000 Hz.

miPod supports the following functionality
● Play: plays the song
● Stop: stops the song
● Pause: pauses the song
● Restart: restarts the song
● Fast forward: seeks forward
● Rewind: seeks backwards
● Share: share a song with another user
● Query: get the users and regions a song is provisioned for
● Multi-language support (German, English)

Implementation

Keys and Configuration
● Factory

○ factory_enc_sk, factory_enc_pk: Ed25519XChacha20 keypair; used to encrypt
region_song_keys in drm song files.

○ factory_sign_sk, factory_enc_pk: Ed25519SHA512 Keypair; used to sign
region_song_keys and user_song_keys to ensure that they are valid, and
(transitively) prove that the derived song_key is also valid.

● Device
○ mixkey: 16-byte Prince key; used in the key derivation process as a step for

deriving private keys within the microblaze component from seeds provided from
the miPod application.

○ hmac_key: 32-byte HMAC key; for creation of the HMAC of the user login data
and later the final step of the key derivation process, used to derive private keys
from the result of applying the mixkey to the miPod-provided seed.

● Region
○ region_sk, region_pk: Ed25519XChacha20 keypair; A keypair used in

conjunction with the factory encryption keypair used to encrypt and decrypt
region_song_keys stored in drm song files.

● User
○ Pin: 8-64 digit pin; used by users to authenticate with the miPod application and

the starting point for deriving their private keys.

6

Husky Records confidential

○ Seed: 68-byte result of argon2kdf; derived from applying argon2kdf to user pins
in combination with a unique salt as the first step in the key derivation process.

○ user_enc_sk, user_enc_pk: Ed25519XChacha20 keypair; used in conjunction
with those of other users to decrypt grants issued by the song owner in order to
play songs.

○ user_sign_sk, user_sign_pk: Ed25519SHA512 Keypair; used by song owners
to sign grants they create for other users so that those users may listen to
songs.

● Song
○ song_key: XChavha20 key; used to encrypt song blocks.
○ region_song_key: 32-bytes random data; combined with user_song_keys via a

PRINCE decryption to derive song_keys. These are first signed by
factory_sign_sk and then encrypted with a specific region_enc_pk and the
factory_enc_sk and placed in drm song files at provision time. They are unique
per song.

○ user_song_key: 32-bytes random data; combined with region_song_keys via a
PRINCE decryption to derive song_keys. These are first signed by
factory_sign_sk and then encrypted with the song’s owner’s user_enc_sk and
the grant recipient’s user_enc_pk. They are unique per song.

Special Modules and Security features

Kingcrab
Custom FPGA core that adds security. It binds key derivation computation to the FPGA using a
key that is generated at build time. As it is implemented in the FPGA fabric, and not the
Microblaze, reverse engineering is more difficult. The modules are used to transform the key
derivation data which was sent by the miPod application. This prevents external brute forcing of
pins and enforces rate limiting. The Kingcrab module is based on Prince encryption.
Hint: Running the Synthesis will report a timing issue with the Kingcrab FPGA Core. This is
expected behaviour and is part of one of our security measurements.

Custom seeded crypto
Seeds and constants for hash and crypto function generated at build time. These seeds can be
only extracted by side channels or reverse-engineering.

Required presence of components for key derivation
For the login and key derivation the presence of the protected miPod app and the DRM module
is required. Each component contains secret keys which are used in the process. An offline
generation of seeds or key material is therefore not possible. The DRM module and the miPod
app enforce rate-limiting individually.

7

Husky Records confidential

Environmental monitoring
The Husky Records Music Player uses state of the art hardware monitoring features, which are
provided by the Zynq 7000. The XADC FPGA core reads the current chip temperature and
various voltages and resets the DRM module in case it violates defined thresholds.

Glitching and Timing attacks prevention
“To serve and reset”

The well proven “Protectonator” script from last year's design is reused this year again. It adds
random delays and computations into the code at build time and verifies the correct execution at
runtime. In case of mis-computations, the Microblaze memory will be purged and the DRM will
be reset. To limit the rate of resets, the design enforces a 3-5 seconds waiting period after
loading the DRM module.

Binary packing
The miPod binary is packed by the factory. This helps save space and makes it difficult for
attackers to reverse engineer the miPod application. The binary is packaged with UPX and
sstrip is run on the resulting binary. This results in UPX being unable to unpack the binary from
the command line.

I2S tweaking
The design uses customized clock frequencies for the ARM core, the DDR memory and the PL.
Due to the implementation of the given I2S module, we need to modify the clock frequency for
I2S. The default 24,576 MHz needs to be multiplied with the ratio to the current PL frequency 2

and 100MHz. In case of 111 MHz the I2S clock frequency needs to be 27.306MHz. Without the
clock adjustment, the sound output is too slow or too fast.

Multi-language support
The implementation of the software supports the usage of different language files. These can be
selected at build time. For convenience, the language files for English and German are
provided.

Requirements
The provisioning requires Python3.7 and several python modules. They are listed in
requirements.txt and can be installed with pip. Also, the merkle_bindings C module has to be
built. This can be done by running python3.7 build_merkle_bindings.py in the tools
folder. Building the miPod application requires UPX and sstrip.

2 See https://reference.digilentinc.com/reference/pmod/pmodi2s2/reference-manual

8

Husky Records confidential

Provisioning Process
The provisioning process is largely the same as the reference implementation. See above for
the kinds of keys that we generate during the provisioning process.

NOTE: All intermediate build files (aside from media files to be distributed to customer
devices) are to be kept confidential and must not be distributed. This is especially true
for secrets files that have not been properly packaged!

createRegions
Syntax: “createRegions --region-list <regions> --outfile <region.secret>”

Description: This script creates the region secrets file. It creates an entry for every region
provided and writes a file to the given output

Output: A json file with the fields “regions”, “factory”, and “device”

● regions
○ Maps a region name to the region’s name, id, public key, and secret key

● factory
○ The factory’s enc_sk, enc_pk, sign_sk, sign_pk, sign_sk_seed

● device
○ The preview key

createUsers
Syntax: “createUsers --user-list <user:pin> --outfile <user.secret>”

Description: This script creates the users secrets file. --user-list is a list of “user:pin”
combinations. It creates an entry for every user provided and writes a file to the given output

Output: A json file with the fields users and device

● users
○ Maps a username to the user’s name, id, secret key, public key, sign secret key

seed, sign public key, salt, and check bytes
● device

○ The key used by the kingcrab FPGA block

protectSong
Syntax: “protectSong --region-list <regions> --region-secrets-path <region.secret> --outfile
<song.drm> --infile <song.wav> --owner <user> --user-secrets-path <user.secret>”

9

Husky Records confidential

Description: This script protects a given file song file. The song is owned by the user given
and can only be played on devices provisioned with a region in the region list.

Output: An encrypted song. The song format can be found at the end of this document.

createDevice
Syntax: “createDevice --region-list <regions> --region-secrets-path <region.secret> --user-list
<users> --user-secrets-path <user.secret> --device-dir <device>”

Description: This script creates files needed for a device. It creates files that are used by the
DRM and miPod.

Output:

● mb/secrets.h

○ The region signing keys (if the device is not provisioned for a region the key is 0)
○ The factory encryption public key
○ The factory signing public key
○ The preview key

● miPod/secrets.h

○ Provisioned regions as an array of booleans
○ The factory signing public key

● miPod/user.user (a file is created for each provisioned user)
○ The user’s id
○ The username
○ The user’s encryption public key
○ The user’s signing public key
○ Check bytes
○ Salt

● miPod/regions: List of all regions created
● miPod/users: List of all users created
● xor: Mix key used by the “kingcrab” FPGA block

buildDevice
Syntax: “buildDevice -p <dev_path> -n <project_name> -bf <build_flag> -secrets_dir <device>”

Description: This script builds the bitstream and the miPod application. It outputs the files into
the device folder given by -secrets_dir. Specific sections can be run by using the build flag. The
sections are cs (copy secrets), cp (create project), gb (generate bitstream), bm (build microblaze
and miPod), cb (combine bitstream), or all.

Output: The bitstream containing the DRM program and the obfuscated miPod program

10

Husky Records confidential

packageDevice
Syntax: “packageDevice <template.bif> <miPod.bin> <download.bit>”

Description: Creates a miPod.bin using the created bitstream

Output: The miPod.bin

deployDevice
Syntax: “deployDevice <SD card> <boot.bin> <audio_folder> <miPod_folder> <image.ub>
--mipod-bin-path <miPod.bin>”

Description: Deploys a device to a SD card. audio_folder contains all of the encrypted songs
that are to be deployed and miPod_folder is the path to the miPod folder in the device folder.

Output: A provisioned SD card

11

Husky Records confidential

Provision Flowchart

12

https://www.draw.io/?page-id=sWUDZEdHlLQcXkLEOSWn&scale=auto#G11Qz6O-H47A4GVXvWT3ufiMF8sYUTBg4V

Husky Records confidential

Login Process
Numbers on orange boxes notate order of execution.

13

Husky Records confidential

Login Detail
This is an elaboration of the above steps. The numbers show the general evaluation steps, but
this is more specific on what’s actually being computed.

1. We first verify that the user’s information file is signed by the factory. The distributor is
the sole source of truth for this kind of information. It should not be possible to construct
arbitrary users. We verify a signature on the user information committing to a fixed set of
user parameters. See the user information structure above.

2. Compute Blake2b HMAC of the user PIN and username with a miPod-specfic HMAC
key, verify against stored hmac in user information file.

3. Query the DRM module to compute an Blake2b HMAC with the DRM module secret key.
(This is a proof of the presence of the DRM module.)

4. Apply Argon2ID on the HMAC to derive preseed.
5. Verify the part of the result against the check bytes in the user information file.
6. Pass the rest of the KDF result with the signed user information to the secure DRM

processor.
7. On the secure processor, we verify the factory signature on the user information.
8. Run the first half of the preseed through the kingcrab module, computing the user

encryption key.
9. Compute a Blake2b HMAC of the encryption key using a microblaze-specific HMAC key.
10. Run the second half of the preseed through the kingcrab module, computing the user

signing key.
11. Compute a Blake2b HMAC of the signing key using a microblaze-specific HMAC key.
12. Store the results and mark the user as logged in.

Most of this logic is implemented here: /mb/neu_fw/src/crypto.c

If any of the verification steps on the secure processor fail, it performs a DAB. This file also is
responsible for much of the logic used in the following section on the song play loop.

14

Husky Records confidential

Music Playing Process
This diagram is similar for the preview play code path, except fewer decryption steps are used
and a different merkle root for just the preview is used instead. The miPod is also responsible
for loading the correct region and grants to the microblaze.

15

Husky Records confidential

Song Load Detail
There’s two main phases in playing songs. There’s the load phase and the play phase. Some
earlier validation steps happen in the miPod player, but the primary logic happens on the secure
processor. If any verification step fails, the secure processor performs a DAB.

1. First we verify that the song metadata is authentic against a factory public key. Only the
vendor should be able to issue songs. We commit to all of the blocks of the song (and
the preview) through a Merkle root in this metadata header, so we indirectly are
pre-committing to verifying the contents of the song (see later).

2. Secondly, we verify the region block corresponding to the region of the device. We
verify this signature so ensure that we do not attempt to play songs we do not actually
have a valid key for.

3. We verify that the region ID of this song is a region ID we have a key for. This is simply
checking against an ID we have stored in the firmware.

4. We decrypt the region block with some stored key information to reveal the region key.
This key forms half of the song key.

5. Using the users secret decryption key we derived during login, we decrypt the user grant
that the miPod provided us to reveal the user key. The miPod is expected to only load a
grant that we should be able to decrypt. The user key is issued to the song owner, but
the owner can share the song to other users by issuing a grant, which stores a copy of
the key (and a signature) encrypted under a different key.

6. XOR the region key and the user key together in order to produce the song key. This is
the actual XChaCha20 key the song is encrypted under.

7. We verify the key against its hash stored in the metadata block. This is a final check to
ensure that the key was generated properly.

Before playing, the miPod player must precompute a hash of each block in the song. These
hashes are the leaves of a Merkle tree of all of the song blocks. The roots of these trees are
stored in the metadata blocks of each song.

1. For each block, the miPod player must generate a Merkle proof, proving that the block is
committed to in the Merkle root for the block header. In order to produce this proof, the
player must have all of the leafs used in generating the root available, so this indirectly
enforces that the whole sequence of blocks is available to the player when playing a
song.

2. The secure processor is passed the song block and a proof of the song block. It hashes
the song block and verifies the proof with it against the root stored in the header. If it
fails, it performs a DAB.

3. We then decrypt the song block using the song key that was generated in the load
phase. This step is not performed when playing a preview as previews are not
encrypted. After decrypting, the samples stored in the song block are sent to the DAC to
be rendered into sound.

16

Husky Records confidential

Pause, Resume, Rewind, Fast-forward
There’s special messages that we sent to the secure processor, directing it to update its internal
state about which song block is next so it knows how to properly verify the next song block
proof. Similarly, when pausing we tell it not to keep spinning and expecting new song blocks
until we send the next play message. In order to avoid scrambled output, the DMA buffer gets
flushed.

Song Sharing Process
The song sharing process is simple enough that it doesn’t need to have a flowchart written out
for it. The sharing process is executed on the microblaze and requires that the user already be
logged in since it needs decryption keys that can only be derived from the user seed, which is
only ever computed on the microblaze.

1. miPod loads and verifies metadata and owner’s grant information for song
2. miPod directs secure processor to compute a grant for a user, providing their user

information structure
3. Secure processor verifies that the currently logged in user is the real owner of the music

file, by checking against some metadata
4. Secure processor performs basic validation on the target user information to verify it is

authentic (verifying signature against factory key, etc.)
5. Secure processor computes up to step 5 of the song loading process in order to obtain

the user song key, and then re-encrypts this and with the target user’s public encryption
key, packaging it into a new grant

6. New grant structure is passed back to miPod player
7. miPod appends grant information to the DRM file, so it can be read later by the target

user

17

Husky Records confidential

Troubleshooting

How to build Microblaze and Bitstream independently

1. Clone this repository to a known location (<project_directory>, you can use /ectf)

2. Open Vivado 2017.4

3. In the Tcl Console at the bottom of the screen, run the following commands

cd <project_directory>/pl/proj
source create_project.tcl

4. Click “Generate Bitstream” and select OK on the dialog

5. Wait for the project to generate in Vivado.

6. Open Xilinx SDK 2017.4

7. Import the following projects by pointing the Import Projects wizard to:

<project_directory>/mb/

18

Husky Records confidential

19

Husky Records confidential

8. If you get errors in neu_fw, regenerate sources in neu_fw_bsp by right-clicking the
neu_fw_bsp project in the project explorer and selecting Re-generate BSP Sources.

20

Husky Records confidential

21

Husky Records confidential

This Page Intentionally Left Blank

22

